If the function  $f(x) =  - 4{e^{\left( {\frac{{1 - x}}{2}} \right)}} + 1 + x + \frac{{{x^2}}}{2} + \frac{{{x^3}}}{3}$ and $g(x)=f^{-1}(x) \,;$ then the value of $g'(-\frac{7}{6})$ equals

  • A

    $\frac{1}{5}$

  • B

    $- \frac{1}{5}$

  • C

    $\frac{6}{7}$

  • D

    $ -\frac{6}{7}$

Similar Questions

If Rolle's theorem holds for the function $f(x) = 2{x^3} + b{x^2} + cx,\,x\, \in \,\left[ { - 1,1} \right]$ at the point $x = \frac{1}{2}$ , then $(2b+c)$ is equal to 

Rolle's theorem is true for the function $f(x) = {x^2} - 4 $ in the interval

For the function $f(x) = {e^x},a = 0,b = 1$, the value of $ c$ in mean value theorem will be

Verify Mean Value Theorem, if $f(x)=x^{2}-4 x-3$ in the interval $[a, b],$ where $a=1$ and $b=4$

The value of $\left[ {\frac{{\log \left( {\frac{x}{e}} \right)}}{{x - \,e}}} \right]\,\forall x\, > \,e$ is equal to (where [.] denotes greatest integer function)