If the function $f(x) = - 4{e^{\left( {\frac{{1 - x}}{2}} \right)}} + 1 + x + \frac{{{x^2}}}{2} + \frac{{{x^3}}}{3}$ and $g(x)=f^{-1}(x) \,;$ then the value of $g'(-\frac{7}{6})$ equals
$\frac{1}{5}$
$- \frac{1}{5}$
$\frac{6}{7}$
$ -\frac{6}{7}$
If Rolle's theorem holds for the function $f(x) = 2{x^3} + b{x^2} + cx,\,x\, \in \,\left[ { - 1,1} \right]$ at the point $x = \frac{1}{2}$ , then $(2b+c)$ is equal to
Rolle's theorem is true for the function $f(x) = {x^2} - 4 $ in the interval
For the function $f(x) = {e^x},a = 0,b = 1$, the value of $ c$ in mean value theorem will be
Verify Mean Value Theorem, if $f(x)=x^{2}-4 x-3$ in the interval $[a, b],$ where $a=1$ and $b=4$
The value of $\left[ {\frac{{\log \left( {\frac{x}{e}} \right)}}{{x - \,e}}} \right]\,\forall x\, > \,e$ is equal to (where [.] denotes greatest integer function)